Posts filed under ‘R Programming’

New release of pqR, with a curated repository

I have released a new version, pqR-2014-06-19, of my speedier, “pretty quick”, implementation of R.  This and the previous release (pqR-2014-02-23) are maintenance releases, with bug fixes, improved documentation, and better test procedures.

The result is that pqR now works with a large collection of 3438 packages.

(more…)

2014-06-21 at 10:59 pm 2 comments

Inaccurate results from microbenchmark

The microbenchmark package is a popular way of comparing the time it takes to evaluate different R expressions — perhaps more popular than the alternative of just using system.time to see how long it takes to execute a loop that evaluates an expression many times. Unfortunately, when used in the usual way, microbenchmark can give inaccurate results.

The inaccuracy of microbenchmark has two main sources — first, it does not correctly allocate the time for garbage collection to the expression that is responsible for it, and second, its summarizes the results by the median time for many repetitions, when the mean is what is needed. The median and mean can differ drastically, because just a few of the repetitions will include time for a garbage collection. These flaws can result in comparisons being reversed, with the expression that is actually faster looking slower in the output of microbenchmark. (more…)

2014-02-02 at 2:31 pm 8 comments

New version of pqR, now with task merging

 
I’ve now released pqR-2013-12-29, a new version of my speedier implementation of R.  There’s a new website, pqR-project.org, as well, and a new logo, seen here.

The big improvement in this version is that vector operations are sped up using task merging.

With task merging, several arithmetic operations on a vector may be merged into a single operation, reducing the time spent on memory stores and fetches of intermediate results. I was inspired to add task merging to pqR by Renjin and Riposte (see my post here and the subsequent discussion). (more…)

2014-01-01 at 10:11 pm 4 comments

Deferred evaluation in Renjin, Riposte, and pqR

The previously sleepy world of R implementation is waking up.  Shortly after I announced pqR, my “pretty quick” implementation of R, the Renjin implementation was announced at UserR! 2013.  Work also proceeds on Riposte, with release planned for a year from now. These three implementations differ greatly in some respects, but interestingly they all try to use multiple processor cores, and they all use some form of deferred evaluation.

Deferred evaluation isn’t the same as “lazy evaluation” (which is how R handles function arguments). Deferred evaluation is purely an implementation technique, invisible to the user, apart from its effect on performance. The idea is to sometimes not do an operation immediately, but instead wait, hoping that later events will allow the operation to be done faster, perhaps because a processor core becomes available for doing it in another thread, or perhaps because it turns out that it can be combined with a later operation, and both done at once.

Below, I’ll sketch how deferred evaluation is implemented and used in these three new R implementations, and also comment a bit on their other characteristics. I’ll then consider whether these implementations might be able to borrow ideas from each other to further expand the usefulness of deferred evaluaton. (more…)

2013-07-24 at 11:03 pm 17 comments

Fixing R’s NAMED problems in pqR

In R, objects of most types are supposed to be treated as “values”, that do not change when other objects change. For instance, after doing the following:

  a <- c(1,2,3)
  b <- a
  a[2] <- 0

b[2] is supposed to have the value 2, not 0. Similarly, a vector passed as an argument to a function is not normally changed by the function. For example, with b as above, calling f(b), will not change b even if the definition of f is f <- function (x) x[2] <- 0.

This semantics would be easy to implement by simply copying an object whenever it is assigned, or evaluated as the argument to a function. Unfortunately, this would be unacceptably slow. Think, for example, of passing a 10000 by 10000 matrix as an argument to a little function that just accesses a few elements of the matrix and returns a value computed from them.  The copying would take far longer than the computation within the function, and the extra 800 Megabytes of memory required might also be a problem.

So R doesn’t copy all the time.  Instead, it maintains a count, called NAMED, of how many “names” refer to an object, and copies only when an object that needs to be modified is also referred to by another name.  Unfortunately, however, this scheme works rather poorly.  Many unnecessary copies are still made, while many bugs have arisen in which copies aren’t made when necessary. I’ll talk about this more below, and discuss how pqR has made a start at solving these problems. (more…)

2013-07-02 at 9:44 pm 3 comments

How pqR makes programs faster by not doing things

One way my faster version of R, called pqR (see updated release of 2013-06-28), can speed up R programs is by not even doing some operations. This happens in statements like for (i in 1:1000000) ..., in subscripting expressions like v[i:1000], and in logical expressions like any(v>0) or all(is.na(X)).

This is done using pqR’s internal “variant result” mechanism, which is also crucial to how helper threads are implemented. This mechanism is not visible to the user, apart from the reductions in run time and memory usage, but knowing about it will make it easier to understand the performance of programs running under pqR. (more…)

2013-06-30 at 8:37 pm Leave a comment

Comparing the speed of pqR with R-2.15.0 and R-3.0.1

As part of developing pqR, I wrote a suite of speed tests for R. Some of these tests were used to show how pqR speeds up simple real programs in my post announcing pqR, and to show the speed-up obtained with helper threads in pqR on systems with multiple processor cores.

However, most tests in the suite are designed to measure the speed of more specific operations. These tests provide insight into how much various modifications in pqR have improved speed, compared to R-2.15.0 on which it was based, or to the current R Core release, R-3.0.1. These tests may also be useful in judging how much you would expect your favourite R program to be sped up using pqR, based on what sort of operations the program does.

Below, I’ll present the results of these tests, discuss a bit what some of the tests are doing, and explain some of the run time differences. I’ll also look at the effect of “byte-code” compilation, in both pqR and the R Core versions of R. (more…)

2013-06-24 at 11:40 pm 11 comments

Older Posts


Calendar

September 2014
M T W T F S S
« Jun    
1234567
891011121314
15161718192021
22232425262728
2930  

Posts by Month

Posts by Category


Follow

Get every new post delivered to your Inbox.

Join 115 other followers